Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae.
نویسندگان
چکیده
The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 x pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 x pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma+ recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.
منابع مشابه
A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process.
Null mutations in three recombination and DNA repair genes were studied to determine their effects on mitotic recombination between the duplicate AdoMet (S-adenosylmethionine) synthetase genes (SAM1 and SAM2) in Saccharomyces cerevisiae. SAM1 and SAM2, located on chromosomes XII and IV, respectively, encode functionally equivalent although differentially regulated AdoMet synthetases. These simi...
متن کاملMeiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae.
We have examined meiotic recombination between two defined leu2 heteroalleles present at the normal LEU2 locus and in leu2-containing plasmids inserted at four other genomic locations. In diploids where the two leu2 markers were present at allelic locations on parental homologs, the frequency of Leu2+ spores varied 38-fold, in a location-dependent manner. These results indicate that recombinati...
متن کاملInitiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملExamination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in Saccharomyces cerevisiae.
Mutation in SGS1, which encodes the yeast homolog of the human Bloom helicase, or in mismatch repair (MMR) genes confers defects in the suppression of mitotic recombination between similar but nonidentical (homeologous) sequences. Mutational analysis of SGS1 suggests that the helicase activity is required for the suppression of both homologous and homeologous recombination and that the C-termin...
متن کاملChromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference.
In the yeast Saccharomyces cerevisiae, small chromosomes undergo meiotic reciprocal recombination (crossing over) at rates (centimorgans per kilobases) greater than those of large chromosomes, and recombination rates respond directly to changes in the total size of a chromosomal DNA molecule. This phenomenon, termed chromosome size-dependent control of meiotic reciprocal recombination, has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 135 1 شماره
صفحات -
تاریخ انتشار 1993